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line 2 should read:

this efficiency factor. Then %(T) = const q(T)T, or”

eqpation (21) should read:

“( @]2””sec-1“--”-----”-----””--%(T) _ ~o ~~-32 “~kcd-e~
A/T

Note: The value of the constant
is ~~ ~o-s2

m’
Replacing this value

kR(T) used in this Technical Note .

by ~ x 10-32 in evaluating

rela&tion times would modify figure 8: The-shaded portion of the figure
would be uniformly displaced upward by a factor of 2.5. ADO the effect
on the values of (~)0= reaction given on page 32 is to multiply all of
thereby 2.5.

Page 22, the definition of fi should read:

fi =
number of moles of species i ‘i=-

total number of moles in cold air &k”
k

Page 25, line 12 from the bottom should read:

“Equations (26) and (27) were used with R = 28.8, ~ = 0.22, and”
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!LEC!HNICALNOTE 4144

I!WFIZCTOF OXYGEN RECOMBINATION ON ONE-DIMENSIONAL FLOW

M! HIGH MACH NUMBERS

By Steve P. Heims

SUMMARY

A theoretical anslysis of air flow in a chsmnel in which oxygen
dissociation and reconibinationoccur has been made. The channel is viewed
as a stresmtube in the flow around a blunt body. The analysis is begun
with the writing of the differential equation which gives the concentra-
tion of atomic oxygen as a function of distance slong the chsmnel. The
differential eqyation involves the reaction rate constsmt for the o~gen
recombination reaction. This rate constant is evaluated theoretical.3y
from a formula due to Wigner, which yields a different result from simple
collision theory. The eqpation for the atomic o~gen concentration thus
obtained is solved together with the flow eq-tions.. The equations may
be solved by ordinary hand-computation procedures. An exsmple is workedk
out to show the variation of the flow in a certain streamtube and its
dependence on whether the o~gen reaction is ‘*frozen,’l“in 10CSL equilib-

W rium,’1or proceeding at the finite rate indicated by the theory. The
concept of a local relaxation length is aL@oyed. From inspection of
the flow equations and the behavior of the cumulative lag of the chemical
reaction it is possible to judge without detailed numerical calculations
whether cha@ng one of the flow parameters brings the system closer to
the ‘chemical equilibrium” or “frozen reactiont~limit.

An investigation is made of the comparative relaxation times of
the o~gen dissociation-recombinationreaction in relation to molecular
vibrations. A reason for interest in this is that it has usually been
assued that vibrational relaxation occurs fast relative to chemical
relaxation and therefore may be regafied as being in equilibrium. The
present analysis indicates that it is not generally true that the vibra-
tional relaxation times are short compared to the time characteristic of
the chemical reaction. In this connection the generalization of the con-
cept of chemical equilibrimn constant is introduced for the case that the
molecular vibrations sre not in eqyilibrlum. Some values of the relaxa-
tion times
the effect
relatively

.

*

are calculated
of vibrational
long.

and
lag

presented. A method is given to estimate
when the vibrational relaxation times are
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INTRODUCTION

In the temperature range between 4500° K end 7000° K md at densities
lying somewhere between O.lnomnal atmospheric density smd 10 times the
normal density of the atmosphere, the oxygen of the air is largely in

nascent form, while the nitrogen is mostly

/

in diatomic form (see, e.g., ref. 1). This
is the state of the air after it has come to

SHOCKWAVE chemical.equilibrium behind a strong shock
wave (Mach numbers 10 to 20, depending on
the density of the cold air).

If subsequmitly this hot air flows around

BE a blunt object, it will expand snd cool ad
the oxygen atoms will recombine. The recombi-
nation process is exothermic, giving off ~.12
electron volts for every pair of o~gen atoms

— that recombine. Thus the reaction is a source
of heat snd will retard the coohg of the
air. In this paper we study the effect of
the oxygen recombination on the flow. Because
of the difficulties involved in solving the
flow around a blunt body even without chem-
ical reaction, we focus attention on a single
stresmtube of the flow. Such a stresmtube
is approximated by the one-dimensional flow
in a chsmnel of variable cross section. The
cross section of the flow at first decreases,
reaching a minimum which corresponds essen-
tially to the sonic line, snd then increases
again (see sketch).

The content of the present study is indicated by the following
outline: First a differential equation is derived, whose solution gives
the fraction of the o~gen dissociated as a function of position in the
channel. The formal.solution is written down, but its numerical evaluat-
ion reqtires knowledge of the oxygen recombination rate constant and
the value of the local pressures end temperatures. The rate constsnt is
then discussed in the light of theory and experiment. Then the one-
dimensional flow equations with chemical.reaction and variable p~cific
heat are given; a numerical method of solution of the flow equations is
suggested. The three cases,,zero reaction rate, infinite reaction rate,
and the finite rate corresponding to the actual rate constant, are dis-
tinguished snd compared in a numerical example. Lastly the assumption
of local vibrational equilibrium is exsmined; some comparisons are made
between vibrational relaxation tties and chemical relaxation times and
their practical snd theoretical significance a~praised.

v



NACA TN 4144

A

a

%M

B,Bx,B(y)

c

D

E

e

s F+

m f

g

g~
~

cross-sectional

cross-sectional

constant length

SYMBOLS

area

area at throat of channel

in the Morse potential

sum of the collision radii in collision between oxygen atom
snd third particle

dimensionless parsmeter,defined

nwnber of oxygen atoms, free or
fluid

dissociation ener~ of molecule

energy

base of natural logarithm

statistical factor on which the

by equation (1.2)

combined, per unit mass of

recombination rate depends
according to the E@ng theory

psrtition function

function related to enthal.py,defined by equation (28)

fraction of states in oxygen-o@gen ground state to be counted
as attractive

Planckts constsat

enthal..yper unit mass

EOltzmaun constant

dissociation rate constant

recombination rate constant

equilibrium constant

length

length of channel
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x
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mass of an atom; mass-flow rate through channel; also a
constsnt

mean molecular weight

mean atomic weight

nitrogen

nitric oxide

Avogadrots nwiber

number of particles

number of particles

of 02 per unit volume

of M yer unit volume

4144

●

—

—

number of free oxygen atoms per unit volume

oxygen atom.

o~gen molecule

pressure

net number of O atoms liberated per sec per unit volume

constant length in the formula for the Morse potential

distsnce between two oxygen atoms

dimensionless measure,
J

‘2
o MY)

time, sec

absolute temperature, %

flow velocity

relative velocity qf two colliding oxygen atoms

interaction potentis& between two oxygen atoms

fraction of oxygen atoms which are free, _
a~+.w

initial value of x

value of x corres~nding to local chemical equilibrium

distmce along the flow

—

-—
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w

—

.
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b

8

q(T)

v

P

a

T

S1

v

U3

average vibrational energy per diatomic molecule

efficiency of a triple collision in producing recombination

ratio of change in vibrational ener~ to change in chenical
energy, if vibrations are in equilibrium

average efficiency of triple collisions in producing recom-
bination

relaxation length for chemicsl reaction defined by equa-
tion (7)

vibrational frequency of diatomic molecule

density

constant

relaxation time of the chemical reaction

Subscripts

units of atmospheric pressure

initial value

sea level

vibrational

case of infinite rates of reaction
(Thus ~ is an approxhnate value of A where all the
variables on the right-hand side of eqwtion (8) are
replaced by the infinite rate values.)

Superscript

cold air

EQUATION FOR TTllZFRACTION OF OXYGEN IN ATOMIC FORM
.

As hot gas wlth~art,isUy dissociated oxygen enters a convergent-7
divergent channel, the cooling of the gas and the oxygen recombination
reaction will proceed, causing a continuous variation of the fraction
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d
of the o~gen which is dissociated.. The purpose of this section is to
derive and solve the equation expressing this variation. The flow treated
is stesdy and one-dimensional. Catalytic reactions at surfaces are not #

considered. The solution obtained will depend on the value of the
reaction rate constant,
section.

which will be treated separately in a later

Derivation of Eqpation .- .—

Since the flow is assumed steady, so
that the condition at any one station is
independent of time, we can write a time-
independent conservation equation for
free oxygen atoms. Let P equal the -

T~ net number of oxygen atoms liberated per
unit volume sxd unit time. Then

f

++
PAAy. Ilou”ds (1)

~Y
shply states that the number of O atoms
liberated per second in the volume element

s

indicated in the sketch must eqpal the flux of free oxygen atoms across
its surfaces. Here A is the cross-sectional srea of the chsmnel.

.
.

ds m element of surface, %? the
no the number of free o~gen atoms
one-dimensional,we have

t
%~”$=

local velocity of
per unit volume.

* (n@lA)&y

,

the fluid, and
If the flow is

Defining x=~/(2n02+no)=mass ratio of the oxygen in free formto the
oxygen in either the fofi O or 02 (mass fraction of oxygen in atomic
form), we csm
ber of oxygen
Then eqyatiou

write no = Cpx, where C is a constszrbequal to the num-
atoms, either
(1) becomes:

where m . puA is the mass

in the fomn O or 02, per unit mass of fluid.

dx—=LP=L
dy mC

(2)
puc

flow rate through the chsnnel, a constant.

Now P must be expressed in term of the chemical rate constant
and the concentration of the reackrbs. In Order to dissociate, the

.

.
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oxygen molecule
eIIOU@ to break
thus be written

7

must colMde with another particle which is energetic
up the o~gen molecule. The dissociation reaction can
as:

kD
O&M-+2 O+M

where M is the ‘other” atom or molecule, which activates the oxygen.
The rate of reaction will then be proportional.to the number of colli-
sions between 02 and M, so that one csm writel

%)
x ) = rate of dissociation =kD(T)~=~

diss

(3)

where kD is the dissociation rate constant, a function of temperature
only.

The inverse process, the recombination of two oxygen atoms, cm only
occur if some means is available to carry away the energy that the two
separate atoms must lose to form a stable diatomic molecule. Two mech-
smisms for carrying away the energg are conceivable, a three-body colJ_i-
sion snd radiation. The probability that this energy is given off by

z radiation is, however, negligibly small: Radiative (dipole) transition
csn occur only if one of the oxygen atoms is in the excited lD state,
so the f~a&&:~ of double collisions leading to combination is

m
10-5 ~ e+ Z. Here the 10-5

9
factor is the ususl ratio of d~~t:gg

of collision to the time required for radiation; the factor 5*~e

is the probability that one of the two atoms is in the ID s~ate; Z is
a number mud less than unity which gives the probability that the molec-
ular state arising from this co~sion decays to the stable ground state
of oxygen. The fraction of collisions where a third body is present is
found from elementary kinetic theory to be of the order of 5x10-4 pat;
thus at atmospheric ~ressure snd 5000° K a triple collision is 104/Z
more likely then a radiative co~sion. A general discussion of this
point is given in reference 3, pages 400 to 402.

In the case of a triple co~ision, the third particle takes up the
%

excess energy and momentum. Thus the reaction is O + O + M-+02 + M,
ad

%he -licit assumption is that the time between collisions (or more
precisely, the correlation time) is long compared with the time it takes
the 02 molecule to break up once it is activated. The latter time may

8 be of the order of one period of vibration of the molecule or EXIO-=4

.

—

see, while the correlation time is larger thsmrT1o-1o—— sec. So we
300 Pat

expect equation (3) to be valid for most cases of practical.interest
(see ref. 2).
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% )-m- = rate of recombination = ~(T)~2nM (4)_
rec

The form (4) of the rate law states the rate is proportional to the
number of collisions between three bodies, two of which are oxygen atoms.
As wilJ_be discussed in detail later (p. 17),”kR(T) has different values
for different third lmdies; thus when dealing with a gas mixture such as
air, the right-hand side of equation (4) should be a sum of terms over
different species (Ml, M2, ...) in the gas. However at the present state
of lmowledge of the rate constant this appears to be an overrefinement,
snd the form (4) will be used. This fomn of the law has been verified
experimentally for the recombination of like atoms in an inert gas atmos-
phere at room tempe~ature and near atmospheric pressure (refs. 4, 5,
snd 6).

According to all theories of reaction rates the rate constsnts kR
and kD depend only on temperature, =d do not depend on whether or not
chemical equilibrium exists. They are relateiithrough the equilibrium
constant &(T) = ~(T)/kR(T). The equilibrium constaat is a lmown
function of temperature that csm be calculated accurately from statis-
tical mechanics; it permits us to eliminate either ~ or kD from the
equations. In the following analysis ~ has been eliminated rather
than l%.

.,

Since the net number of atoms liberated, l?,is the balance between
those freed by dissociation snd the number of free atoms bcund through
recombination, one obtains with the help of equations (3) and (4) upon
eliminating kD:

p = %nM(%2Ke-%2) (5)

We can write equation (5) in terms of x, the fraction of oxygen atoms
which are free, and ~, the ~tlocaleqyilibriun value’!of x. In other
words, ~ is that value of x for which [no2Ke(T)-n02]= O. Then,
noting that & = 2Cp~2/(1-~), one finds:

P = -kR(T)c2p%M

putting equation (6) into equation

(f%+‘)‘x-+’
(2) gives_

(6)

—..

dx -(X-XJ
—=—
dy A

(7)

with

.

*
—

:-

—

——

.“

K-

--

k -_

—

-.—

— .-—

8

~
—
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(8)

Equations (7) and (8) give the gradient of the quantity x at every
point in the chsnnel, and the integral of equation (7) gives the value
of x at sny point y. Equations (7) and (8) are va~d no matter how
far the deviation from chemical equilibrium and regardless of whether
recombination or dissociation is the dominant process.

Physical Interpretation and “Local Relaxation Lengtht’

The quantity A defined through equations (7) and (8) is called
the ~rlocalrelaxation lengbh” of the reaction, and the time T = A/u
is the corresponding relaxation time.

In the special case that l/A end ~ are approxtel.y constant
throughout the flow region of interest, the integration of equation (7)
yields FUIexponential decayto equilibrium:

x(y) - Xe = [x(0)-+]e -$x (9)

s Here h is seen to be the distance reqtired to reduce the deviation
of x from its equilibrium value to one eth of what it
Practically, A and ~ may be regarded as constant only
temperature, and velocity vary slowly. In addition, A
ence on the deviation from local equilibrium, as can be
equation (8) in the form

is initially.
when the density,
has some depend-
seen by writing

1 %(T) ‘@M
-n
A u [(*+++‘X-xe)l

where it must be remembered that the number of third particles, nM, will
usually have a linesr dependence on (x-~) + xe. The dependence of l/A
on (x-~) csn always be safely neglected when (x-~)/xe is small compared
to unity.

Generally the physical situation is quite different from that
described by equation (9) because the temperature end density may vary
rapidly slong the streamtube. Thus, for example, if the flow begins
(at y= O) in chemical.equilibrium, but the parameters of the flow

8
(P,T,u) vary conthUOUSN and rapidly along the streamtube, then the
systm, unable to keep up, till lag further and further behind as the
flow proceeds. In this case, the deviation from equilibrium may increase.
rather than decrease with distance. Generally the tendency to lag behind
equilibrium and the tendency to decay to local equilibrium exponentially
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.

are operating simultaneously. Thus the qualitative behavior of the
systa (whether it stays closer to the infinite rate case or is nearer
to the frozen case) is generally not determined by the magnitude of the i

relaxation length alone, but also by the m~itude of the gradient of xe
and the gradient of A. These gradients can be expressed in terms of the
gradients of temperature, density, snd velocity. It is the relative mag-
nitude of these gradients to the relaxation length that matters. Whenever
throughout the flow A<< ~, where & is the length within which w

—

changes by a factor.of the order of one eth, t%e flow may be regarded as
being in chemical equilibrium in the region of,length Le. Deviations
from equilibrium can be neglected in a channel of length L if every- - -‘+
where A<< L, Le. On the other hand the flow is locally frozen when
Xk >> 1; it cm be treated as frozen throughout a channel, if every-
where A/L>> 1. The more precise snd complete criteria come from
solving the differential eq~tion for x. This will now be done. —

Solution of the Differential Equation

Equation (7) together with equation.(8) expresses the conservation
of oxygen atoms. In principle these equatio~ should be solved simul-

,.

taneously with the other equtions (such as mass and energy conse~ation>
which the channel flow must satisfy. A1.thou@ such a solution will be
very tedious, it is always possible by numerical means-if the function

E“

%(T) iS kIIOWX1.
a

However, an approximation to the solution is obtained by em itera-
tion procedure which begins either with frozen flow or equilibrium flow.
Here we shsJJ for the sake of being definite deal only with the procedure
beginning with chemical.equilibrium. In this procedure one evaluates the
factor l/h at the values pm, Tm, ~, snd ~ corresponding to the case
of the reaction slways being in equilibrium during the flow (infinite
rate). Similarly ~ canbe replacedby ~“- in eqwtion (7). The dis-

—

tinction between ~ and & is a subtle one: xe is the equilibrium
fraction of free oxygen atoms for the temperature distribution existing
in the ch-el whatever the reaction rate; & is the special value
Of Xe when the reaction rate is infinite. By this replacement it
becomes unnecessary to solve equations (7) snd (8) stiultaneouslywith
the other eqpations describing the flow, %ut one may first solve the flow
for local ch-cal equilibrium, ignoring eqpation (7), end then use the
result to evaluate equation (8) and integrate eqution (7). Let us call

—

the approximate solution obtained thusly X(L). Then the error in x
introduced by this approxhation can be shown to be

x - x(l)
“ f (-w5(Y)
n=o
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whe!re

11

—

‘-~ [x( d .XJ5(Y) = (X-&%) + -
b

is the error in first orderi An upper limit to ~ may be calculated by
evaluating ~ end A at the temperature and density corresponding to
chemically frozen flow.

In the present approximateion (i.e., (replacing x by x 1,] eqution
(7) is linear and the formal solution can be written immediately. This
solution, which is the exact solution of the equation,

~(1) = +@) -&J

V h

(see Appendix A):

-s(y)
XJo)

-s(Y) [x(o) -~(0)] + ex(l)(y) = ~(y) + e J’ es*@ (lo)
XCU(Y)

Jwhere the qmtity S(y) is defined by S(y)s y *’—, and S* iS
o &(Y’J

the function of & which at every point is numerically equal to S(y).
If one inverts the function ~(y) to obtain y(~), then
S*(%) = s[y(~)].

The last term in equation (10) vemishes when temperature snd density
(and therefore ~) are constsnt along the flow. In this case it is seen
that’only the exponential decay term remains. On the other hand, if the
fluid is in chemical equilibrium initially, the middle
leaving

J
x(l)(y) . ~(y) + e-s ‘(0) es*&&

%(Y)

tem vanishes

(11)

The solution (10), which is constructed to be most accurate for near
equilibrium flow, is seen to be exact also in the opposite limit of frozen
flow (s =0). In practice b “and its derivatives are expected to be
sufficiently small so that (10) will always be a fair approximation.
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Measure for Proximity to the “Frozen Flow” or
‘Equilibrium Flow” Limits

The location of the solution relative to the two limiting cases
(“frozen” and “local equilibrium”) is with the help of eqpati&
given by:

B(Y) =
x(y)-&Jy)

x(o)-%(y)

Now B = O means the
shows the reaction is

e-s

[ J’
~(o)

* X(o)-&(o)+ es*~
x(o)-xJy)

%O(Y) 1

reaction occurs at an infinite rate, and
frozen. It seems from equation (12) that

(10)

(12)

Bs.1
one has

to evaluate x(l)(y) completely in order to se~ whether B is closer to
zero or to unity. However, for some applications this is not necessary:
If S(y) << 1, it follows from eqyation (12) that B(y) is near unity.
This is a precise statemarb of the fact that if the relaxation length
is long compared with the dimensions of interest, then the zero-rate
approximation is valid.

Another special application is to the flow leading from the region
near the stagnation point of a blunt Ix@ around the edges to the sides
of the body. In this case the reaction is expected to be in equilibrium
at the initial point, taken in the stagnation regi~< Then it is clear
from equation (12) that B has the property e-S.B.l. Further B(y)
can be given a simple geometric interpretation: It is the ratio of the

J’
x(o)

two mess es*~ and es[x(0)-~(y)]. % is to be expected from

%(Y)
the earlier discussion, the value of B depends on the shape of the
function S*(G).

&*
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Tn the illustrative sketch above, the area of the rectemgle enclosed
by the hea.. solid line represents eS*[x(0)-~], and the total area under
one of the alternative dotted lines (which represent dtfferent functions

J

~(o)
S*) iB &*&. The extreme shapes 4 snd 1 clearly correspond

%(Y)
to B approaching e-S and unity, respectively. For sny convex shape
such as 2, as well as for the straight line 3, one has 1/2 < B < 1. In
the last sectionusewill be made of equation (1.2)to discuss the effect
of tidy size and density on the solution.

The quantity B does not tell us whether both limiting cases are
a god approximation or if they are both poor - it only tells of their
relative merit. Amore complete specification of the
obtained if the two parameters

~= x(y)-x&(y) X(o)-x(y)

xaJ(Y)
J 43= x(o)

situation is

are employed. They represent the percent deviation from each of the
limiting curves. They are related to B through:

[ %&IB= I+ X(O)& ‘1

(13)

(14)

THE RECOMBINATION RATE CONSTANT

This section is concerned with a detailed evaluation of lmowledge
concerning the recombination rate constant, a parameter upon which the
flow depends. The reader who is not concerned with this aspect of the
problm is invited to skip to page 21.

At present there are no direct measurements available from which
one csn obtaim the oxygen recombination rate kR(T), for the temperatures
of interest. However, considerable careful work (refs. 4, 5, and 6) has
been done in measuring the rates of recombination of other diatomic gases
(12, Bra) atroomtemperature inthe presence of sn inert gas. Recently
a few results (refs. 7, 8, and 9) have been pub~shed for 12 and Br2
at temperatures between 1000° K and 2700° K in a shock tube. It was
found that the recombination rate for these halogens is smaller at high
temperatures than at low temperatures.2

2After the calculations in the present paper were made, a shock-tube
experiment using air was reported (ref. 10). The author (S. Feldman)
interprets the ~eriment to yield a lower limit for the recombination
rates, which are abut ten times larger than the rates given by equa-
tion (21).
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.
In order to interpolate or extrapolate from experimental.results

for one temperature to different temperatures-or to a different diatomic
gas or to different inert gases, a theory and some understanding of the 9-

mechanism of r~.actionis necessary. No altogether satisfactory theory
for the oxygen recombination rate constant exists. There are, however,
at least three methods available for estimating a rate constant from
theoretical considerations. The three methods are (1) application of
collision theory of “chemical”reactions,(2) application of the general
theory of “absolutet~reaction rates due to E&ring snd co-workers (here-
after simply referred to as the ‘lEyringtheory’t),and (3) a method devel-
oped by E. Wigner specifically for the combination reaction. Since each
of the three theories can make a contribution to our understanding of the
reaction, some comments are qade about each approach; we finally use
Wignerls theory to obtain a numerical value for the rate constsnt. Atten-
tion will be focussed on the temperature dependence of the rate constant,
because predictions based on the three theories give essentially different
temperature dependencies if the usual approximations are made in applying
the theories. This is graphically illustrated in figure 1. The graph
will be further discussed at the end of this section. The disagreement
between the theories may be due to the nature of the approximationsmade;
it is possible that the rigorous calculation by Eyring theory, and further
refinement of collision theory,would yield results in agreement with em
exact calculation by Wigner’s theory.

Collision Theory
.

The basic idea of collision theory (refs. 2, 6, smd 11) is to count
the number of recombination by counting the number of triple col.lisionB.
Some arbitrariness comes in defining the effective radii of the co~ding
particles. This is resolved by approximating the atoms by hard spheres
whose effective radii are taken to be the range of the interatomic forces.
Experimental data such as viscosity measurem~ts or spectroscopicmeas-
urements are often used to detemine these radii (see ref. 12). Some-
times e~erimental results are used to determine an efficiency factor,
that is, the number of reactions per triple collision. This adds snother
element of incompleteness to the theory. The advantage of collision
theory is the simplicity and easy visualization of the concepts employed.

If the duration of the collision is assumed to be inversely propor.
tional to the relative velocity of the atoms before collision, then a
rate constant of the form kR(’T)= constfi is obtained. On the other
hand, if this duration is assumed to be a function of only the inter-
action of the two atoms, one obtains kR(T) = const T. But no matter
which way the duration is calculated, if the efficiency factor is regarded
as a constsnt, the rate constsnt increases with temperature snd disagrees
with the iodine and bromine experiments.

A serious
the neglect of

shortcoming in the collision theory formulation lies in
the fact that the efficiency of a triple collision in

.
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leading
be this
&(T) =

4144 15

to chemical reaction is a function of temperature. Let q(T)
efficiency factor. Then %(T) = const q(T); T or
const v(T) @. It is of interest to get some idea as to the

direction and the exbent by which the introduction of q(T) modifies the
rate constsnt, so a very crude estimate of the efficiency of a triple
collision is made in Appendix B. The efficiency factor is found to be
the position average of r(r) where:

V(r)

{ =+*[~r}

‘— ~+V(r)
I’(r)=L-e ~ (15)

Here V(r) is the value of the interaction potential between the two
oxygen atoms at the point (r) where the triple collision is taking place.
The dependence of r on 1~ is very strong when V/kT << 1 (when I’
1s close to zero), and becomes wesker as V/kT (snd r) increases. The
limiting forms are:

9

r
()

=rl(r)=~ ~ ; &<<l

v
r

O

l“v2
r2(r)=l--- e

-E*1=
j +>>1

2kT

(16a)

Formula (16a) amlies for large r where the potential between the two
oxygen atoms is very weak, and (16b) applies whenever the triple colli-
sion occurs within the central part of the Morse curve. The value of
7(T) is the appropriate average over the quantum mechanical states of
the two o~gen atoms of:

In the
regarded an

averaging process, eqyation (17), each volume element is
equally likely site for a triple collision, except for a

(17)

factor dr/v(r) which measures the the spent in the region dr during
a collision. Note that for equation (16a) the multiplicative factor

. r2/v is relatively large and for equation (16b) it is relatively small.
The different states to be summed over arise from different relative
orientations of the angular momentum vector, which are possible between

.
two atoms in their ‘P state.
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M
Since ?(T) is m aver-

age of r(r), it will always
decrease with increasing b

temperature because r(r)
does. Just how rapidly it
decreases will depend on
the detailed shape of the
potential. To illustrate
these remarks consider the
simple potential shown in
the-ske~ch; there rl and I’z
are independent of r. If
v~~ >>1, and Vlm <<~,
then by the averaging pro-
cedure of equation (17)

3

()l-a VI
~(T)=(l-u)r1+Cir2*T ~ i-a

where

[

3-

[

0
CL% 1+ E “ ‘r=”

kT rls-r2s

.

~-’+%(iii==+jm
Equation (18) indicates that the efficiency factor coul.dmodify the

.

.

simple collision theory sufficiently to change a rate constant with a
positive square root temperature variation to one which decreases with
increasing temperature, but in any case the &dification will be in that
direction.

A further small effect arises from the fact that at low temperatures
the effective collision diameter on which the constsmt in eqpation (18)
depends is not quite constsmt. It is shown in Ap~ndix B that a factor

proportional to T-3 is introduced into the recombination rate at low””-
temperature on that account. Thus also this factor tends to reduce the ‘– ~
positive temperature coefficient which simple collision theory woti pre-
dict. Another approx~tion of collision theory (not further analyzed
here) is to replace the duration of the collision by some average value, .
not taking into account the relative angular momentum of the two atoms.
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theory which attempts to tdse these various effects
would require an integration over two velocities,

* two impact parameters, and one spatial sngle. The region of integrati&
would ~ati-be giv~ ~ eqwtion-(Bl). No such integ&ion till be
attempted here but, as will be seen later on, Wigneris theory does in
effect just that, although using a language
collision theory.

Eyring Theory

The approach used by the Eyring theory
is to diagram the total potential energy of

rather different from

(see refs. 13, 14, and15)
the three atoms as a function

.

.

of their relative positi%. The diag~& tskes the form of sm irregular
surface similar to a system of mountaims snd valleys; the initial rela-
tive position and velocity together with the interatomic forces cause
the three atoms, represented by a _gminton the diagrsm, to move in a cer-
tain way. If the appropriate coordinate system is used, the motion of
this point is identical with that of a mass point rolling around under
the action of gravity without friction in the corresponding momtain
rmge. The combined state (02) is representedby a certain valley, which
is usually reached via a mountain pass. When the three atoms are in the
particular relative position to each other, which is represented in the
diagram by a point in the neighborhood of this mountain pass, the group.
of atoms is referred to as an “activated comple~~; before two oxygen atoms
can combine, they must be part of an activated complex.

According to the theory the rate constant is them seen as the pro-
duct of a statistical factor @ giving the concentration of the acti-
vated complex, and the transmission coefficient IC giving the probabi~ty
that the activated complex will decay into the combined molecule plus
third particle, %(T) = K@. The activated complex is defined only for
reactions reqtiring the addition of an activation energy; thus for two
o~gen atoms which approach head-on, it cannot be defined because the
potential energy curve has no maximum so that there is no activation
energy required. Eowever, generddy two colliding o~gen atoms will have
some relative angular momentum, snd hence a centrifugal potential Which
yields a slight mmum in the potential energy curve. This fact permits
the calculation of the recombination rate tithin the framework of the
E@ng theo~. We shall not attempt the comp~cated task of calculating
the transmission coefficient for the oxygen recombination reaction. Eow-
ever, some rather genersl observations can be made from E@ngls theory
about the relative behavior of different third bodies:

1. An inert third body is much less effective (~ much smaller)
in bringing about recombination than a third particle, such as an
o~gen atom, which can form a chemicsl Wnd with one of the reacting
atoms.

2. The statistical factor # has a different temperature
dependence for different third bodies. If the third body is a
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hard sphere @-@, the collision theory result; but if there exists
- however slight - attractive force between the third atom and

~% reacting atoms then the temperature dependence lies between
@.T snd @-(T)S’2 at the temperatures of aerodynamic interest. If
the third body is a diatomic molecule, such as 02 or N2, then the
temperature dependence lies between @-(T)2 smd.l&-(T)5~2. The rea-
son for these differences is that @ is proportional to the _parti-
tion function of the activated complex; in the hard sphere case the
activated,complex is just a diatomlc molecule, in the active atom
case it is a triatomic molecule, and if.the third body is diatomic,
the complex consists of four atoms. The more atoms the complex
involves, the larger the nuniberof internal degrees of freedom and
the sharper the dependence of the partition function on temperature.

*

●

3. One cannot assert that the recombination rate constazrtwill
have a temperature dependence identical with that of I@ because K

may vary with temperature. However, one does not expect the varia-
tion of ~ with T to be so different for different third bodies as
to wash out altogether the differences in temperature dependence due
to differences in @(T), nor would it be efiected that ~ decreases ‘“-– “
sufficiently rapidly as T increases to produce a-rate constsmt with
a negative temperature coefficient when the’thiriibody iS a diatomic ‘-
molecule. -—.._

L

Wignerts Theory

.

Wigner (refs. 16 snd 17) regards the three particles needed for a
recombination as a member of a canonical ensemble (each member is three

-.—.

such point particles in a box, see ref. 18), =d represents it as a
point in (twelve-dimensional)phase space, where the 12 dimensions are -
the relative positions and momenta of the three particles. A certain
region of this phase space represents the cabined state, while the rest
of the space represents the separated state. ‘%e then asks”(and enswers)
the question: If initially the system is in W uncombined state, what
is the probability that after a time

—

t it will be in the region repre-
senting the combined state? He assumes that the particles follow the

.——

classical laws of mechanics and their interaction potential is a function
of their relative position only, having no expficit time dependence
(adiabatic hypothesis).

.

These ssme asswnptbns also appear in the Eyring
theory. For more detaild discussion of the assumptions underlying the
theory and their va~dity see references 16, 17,,and 19. For the case
in which the third body is an inert atmn, so that its interaction with
the oxygen is that of a hard sphere, he obtains an especially simple
upper limit for the rate constsnt:

* -.

2#aoM
%? = ~ = ~V<o ‘(@+2%M&)v(r)

i

(19) .
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m
where r is the distsnce between the oxygen atoms, ~M is the sum of
the collision radii for interaction between the oxygen and the third body,

* snd V(r) is the interaction potential between the two oxygen atoms. The
fraction gs@ is reqyired to include the fact that the interaction

between two oxygen atoms in their ground state depends on the relative
orientation of their angular momenta. If several attractive states exist
as is the case for oxygen (see, e.g., ref. 3), the really correct proce-
dure would be to add several terms of the form (19). one for each attrac-
tive state. But without considering the
potentials, one csn estimate g~/Zgi on

Witmer rules (ref. 3). It is noted that
md depend neither on temperature nor on

detailed-s~ape of each of these
the basis of the formal Wigner-

the velues of ~ are constants
the nature of the third b@y.

The only depndence of equation (19) on the nature of the third body
is through the ~M; the rate is larger, the bigger the inert atom. This
is in qysntitive agreement with experiments on 1= snd Br2 in different
rare gas atmospheres at room temperature. Further equat~on (19) predicts

a temperature dependence for the upper limit ~(T)-(T)-2. That it is
only sn upper limtt arises in the following way: In Wi@erTs derivation
of the rate constsnt, it is necessary to define the region of phase space
corresponding to the combined state not only for the case that the third
body is far away, but also while all three are in collision. Wigneri
shows that the correct definition of the latter region is the one which
makes the rate constant a minimum, subject to the boundary condition that
it reduces to the correct region when the third body is far away. Not
having any simple procedure for obtaining the shape of this region, Wi~er
uses a simple and reasonable formula for the shape of the region; this
will generally give too large a vslue for the rate constant. Moreover,
the error introduced by using the wrong region increases with increasing
temperature; consequently, it is expected that ~ decreases more rapidly
as the temperature increases than equation (19) predicts (i.e., more
rapidly thsn l/@).

For the present purpose, equation (19) will be used with so = 2.60 A
and a l?brsepotemtial function for V corresponding to the ?‘Zi ground)
state of 02:

[

Z(r-%) (r-~)

V(r) =D e a -2e 6 1
with

a= O.373A, RO=l.2QA, D=5.12e.v. =59,0W0 K
.

The fraction gs~gi is estimated from the Wigner-Witmer rules
1/10. As was mentioned earlier, such eu estimate involves some
uncertainty.

(20)

to be
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The resulting rate

%(T) =

constat is, if the third body is inert,

see”= (21)

The corresponding relaxation times for various temperatures snd densities,
which will be discussed in a later section, are shown h figure 8.

Comparative Discussion of the Three Theories

From collision theory a mechanical model or picture of the reaction
is obtained.,but the theory is, in some respects, too incomplete, and.in
practice, requires the use of experimental data for application.

From E@ngts theory some information is gained about relative rates
with different third bodies. The difficulty in applying the Eyring theory
to the present problem lies in the difficulty of calculating the trans-
mission coefficient. The probability that the activated state leads to
reaction is the probability that the particles end up not only in a cer-
tain relative position (the two O atoms together), but also with cer-
tain relative momenta (the third particle carrying off most of the
kinetic energy). For this reason Eyring~s uqe of a potential energy
diagram in-configuration space is not the most natural way to proceed,
but rather the use of phase sTace is indicated where-momenta sad coordin-
ates enter in symmetrical fashion.

.—
Also the use of-the concept of ‘“

activated complex seems not really suited to the present problem, which
involves practically no activation enerm.

Wigner, by working in ~hase space aad avoiding the introduction of
sny activated complex,can ewress the rate constant in terms of an inte-
gral, which he evaluates for the case that the th~~d body is a hard

sphere. The resulting rate constant varies as T 2; the fact that the
rate decreases as T increases is at least fi qualitative agre=nt with
the aforementioned 12 smd Br2 experiments,__qlthoughthe da~a is best,

fitted by a T-= dependence. The modifications of this T-E law which
would result if the third body were a diatoti-cmolecule rather than a
hard sphere are not clear from Wignerts integrals. The earlier discus-
sion, in terms of ~ing’s activated complex,’suggests that a less nega-
tive or perhaps even a positive temperature coefficient would result.
In the present snalysis we shall make the sin@est assumption, namely
that all third bodies act as hard spheres, rather than assuming an

-.
m

—
——

.
—

—

activated complex.

These arguments led the author to
the theory of Wigner. The reasons for

1. Of the three methods his is
the problem.

select for use in this smlysis
this choice are: ●

the most naturally suited to .
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2. The integrals obtained csm actually be carried out, at least
for a hard sphere third body.

3. Whatexperimental evidence there is, supports a negative
temperature coefficient, and Wigner~s rate constant gives a negative
temperature coefficient,at least for a hard sphere third body.

This concludes the critical evaluation of the three theories. It
is of interest to look again at the graphical presentation (fig. 1) in
the light of the shove discussion because some more definite statements
can be made: For o~gen in sn inert gas presumably curve @ is close
to the correct form and @ is a bad approximation. For oxygen in an
atmosphere of N2 the curve is e~ected to have a shape intermediate

?

between 1 and @. The absolute value of curve @ is obtained from
equation 21). No absolute values for the curves @ and

9
are calcu-

lated; they are arbitrarily tsken to agree with @ at 1000 K, permitting
a comparison of the temperatu dependence. These curves snd their uncer-
tainty serve to point up the need for further experimental measurements
of the rate constsnts.

FIOW WITH CBEMIC!ALREACTION

The Equations

Before one can integrate equation (7) the results (21) for the
recombination rate constant must be inserted into equation (8) and A
must be expressed in terms of x and A, rather than temperature (T),
density (p), and velocity (u). mere is then obtained the following
equation for x in terms of A, for any specified channel shape A(y):

dx dy X-2+
—=-— —
dA dll?l

(22)

This equation is to be solved simultaneously with the remaining flow
equations to describe the flow completely. There are six variables:
xe~ X> T~ Pj P~ ~ U; hence, five additional equations are needed. These
are given below. The equations allow for chtical reaction and variable
specific heat but neglect trsnsport phenomena:

p~=m (mass conservation) (23)

dpudu+-=0 (momentum conse~ation)
P

(24)

udu+dH=O (energy conservation) (25)
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:= (1+7’.) * (equation of state)

Kc(T) +== 2CQ —
l-xc

The qusmtities ~ and ~ are defined by

(26)

(27).

where

number of moles of series i ni=—
‘i = total number of moles in cold air Z#lko

and Mi is the molecular weight of each species. For oxygen ~n an inert
gas, R, ~, and C! are constant. However, for air both C and f depend
on the concentration of NO snd thus are functions of temperature, but
C/~ is independent of the variable concentration of NO. The equilib- ~
rium constsmt &(T) and the enthalpy H are-computed from statistical
mechsnics; these functions have been tabulated by various authors (see
refs. 1, 20, 21, 22, 23, and 24).

Method of Solution

Rather than attapting to salve all six eqyations ((22) to (27))
simultaneously,one can simplify the calculation by dealing with the
frozen flow or equilibrium flow limit, depending on which is eqected
to be nearer to the case of interest, and then correcting for the finite ‘-”
rate case:

For the frozen flow lhnit, one obtains the result by solving simul-
taneously the four equations ((23) through (26)) using x . ~ = const
in equation (26). This differs from the well-known one-dimensional flow
without reaction only in that care must be taken in evaluating the
enthalpy H. The enthalpy at any point is obtained by adding to the
initial enthal.pythe change in enthal.pyof each constituent due to the
change of temperature, but not adding enthalpy change due to a heat of
reaction, since no reaction= permitted. (See, e.g., the tables of
refs. 21 and 22.) Then equations (27) end (22) can be solved in that
order. Of the six variables, only x is sensitive to changes in the
shape of the chsnnel. If a higher approxhation to the flow is desired,
one then inserts the x(A) obtained from equation (22) into equation (26)

.

=:

.
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and, keeping p/p
corrections to the

23

fixed, which is essentially equivalent to i~oring
enthalpyj obtatis a new temperature at every point.

In the other extreme case, equilibrium flow, one solves equations
(23) to (27) simultaneously, replacing x in equation (26) by ~. The
solution (11) for (22) cm then be employed. If a higher approximation
to the flow is desired, one inserts the resulting x(A) - rather than ~ -
into eqution (26) and obtains anew T(A).

It is interesting to note that in both limiting cases, the properties
of the flow (p, p, T, u) are a unique function of the cross-sectional
area A, regardless of how slowly or rapidly the cross section varies
along the che.anel. However, the corrections to the flow in the finite
rate case are not unique functions of A, but through equation (22)
depend on the ~~el shape, dA/dy; so for a finite reaction rate the
flow is different for a chsmnel which contracts (or expands) very sud-
denly to a certain cross section than for one which contracts (expands)
slowly to the sane cross section. This dependence on the linear dis-
tsnce srises because a characteristic length, the relaxation length, has
entered into the problem.

The simultaneous solution of equations (23) through (27) needed for
the equilibrium flow is accomplished as follows: In smalogy to the case
of constant specific heat we introduce into equation (25) instead of H,
the variable g defined by:s

H=gp

g-1 P
(28)

In general, g does not represent the ratio of specific heats. We then
elimimate ~ from ~ations (26) and (27) and u from equations (24)
and (25). There are then obtained two equations involving only p, T,
and p and one can find p(p) and T(p) from them numerictiy. The
equations are

(29)

(30)

‘This is the 7t used by Gilmore, reference 1. He gives some numer-
ical values for air.
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Whenever g is constant along the path, eqpation (30) represents a
polytrope:

g
P ()2‘= PoPO

.

(30a)

UBually g is a slowly varying function, and equation (30a) is a useful
first approximation. The procedure used in the _presentcalculation was
to obtain the first p(p) from equation (30a), and to introduce this
result into eqyation (29) to find T(p). Then if it was found that
g(p,T) did.indeed vary along the path, we fitted the slowly varying
function g(p) by a linear or qysilraticfmctIon, thus~avoiding numer-
ical integration of equation (30). This proc&hxre con~erges very rapidly.
Oqce p(p) and T(p) are known, one readily ob%ains without further iter-
ation u(p), p(A), etc., from eqmtions (23) Wd (24). In numerical
evaluation the most inconvenient feature of this method is that in eqqa-
tion (29) on the left-hand side one is subtracting two large numbers frcm
each other to obtain a relatively small one snd thereby losing some accu-
racy. On the other hand a helpful feature iq that the slopes of the
right-hand side of equation (29), plotted as-a function of T, and that
of the left.bend side are very different. .-

As was noted in an earlier paragraph, ithas up to now been assumed
that the change in enthalpy dH in equa.tion~(25)is the same for flow
with finite reaction as for the limiting case (equilibriumor frozen)
on which the calculation is based. Now we show how the variation in dH
may be evaluated. The enthalpy H (or the @ction g in eq. (30)) must
be recalculated with the new x(A) WT(A)O Thi,s correctionwi~hsye —.

some (however small) effect on all the flow @iriables. In computing the
enthalpy, it must be remembered that H depen@s on T~ p, and x. This
contrasts with the equilibrium situation, in which H depends only on “T
and p. To compute H for air with the helpwf available tables, it is
useful to replace the actual history of the system by a different history, —

as is indicated in the accompanying sketch. !l%isis permissible because H .—

t
x

!1 Actual history, X

i
I
I

Computed history

I
1
I
I

I Ap

..—

To find H or g at the
point ~, the history
is taken to follow either
the equilibrium curve or
a (horizontal)line on
which no reaction is —
taking~lace.

.

A .

Amin
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is a point function of T snd x,
of the gas expressed in terms of

25

and so it is.independent of the history
these three vsziables. With this modi-

fication of the enthalpy determined, we repeat the solution and by this
iteration obtain the correction to the flow variables.

The enthalpy correction tends to be small not only because it is

(‘)-~], but also because it is dueproportional to [x
canceling effects: A change in T and a change in
direction. These changes have opposite signs because
The resulting corrections to the other flow variables
rection to H are smaller the higher the temperature

to two partislly
x in the opposite
p is kept fixed.
for a given cor-
smd flow velocity.

The modification of
enthalpy was found to be

the flow variables due to the correction of the
negligibly small in the exszqle which follows.

Example

As a numerical example the following initial conditions were tsken
for the channel flow:

Po %= 7.8o , — = 1.47
~ al

P.
—= 0.336 , To = 5300° K
PSI

where ps
+
andpl

F
are the stsmdard pressure and density at sea level

and al s the ree-stream velocity of sound at sm altitude of 25 lm.
These initial conditions correspond to the conditions of air having come
to thermodynamic equilibrium behind a normal shock wave of Mach 14.7 at

an altitude of 25 lm. For the finite rate case, the length of the
channel was taken to be 2.5 meters.

Equation~ (26) SZUI(27] were used with R = 28.8, ~ . 0.000765, and
c!= 0.22 nAv~At. Thus the concentration of NO is neglected. For the
rate constsnt eqyation (21) was used; the Mnearized version of the rate
eqpation (7) was assumed so that the solution (10) could be arployed.
In figures 2 through 6 the results are plotted as a function of cross-
sectional area. This area has to decrease sufficiently from its initial
value so that the flow can reach sonic velocities; after that point the
cross section increases again.

It is seen from the graphs that for the frozen case (zero rate),
the contraction of the streamtube at the throat is much less than for
the Infinite rate case. This shows that the o~gen reaction can change
the shape of streamtubes in the flow. The effect reflects the relatively
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large equilibrium flow
frozen flow velocity.

NACATN 4144

velocity at the throat compared to the slower
In the equilibrium case the enthalpy chsage between

the initial point and the throat is comparatively large, befng due to
both thermal and chemical changes; the large ~thalpy chsage requires
~~ge increase in velocity, hence the greater contraction of the stream-
tube in equilibrium flow (see sketch).

A

,Equ~librium Flow

I I
Y~

The initial values of p, u, T,

In addition, the temperature,
density, pessure, and velocity are
shown in-the figures to be lower for
frozen flow than for equilibrium
flow when the flow is supersonic
and when the area ratios are the
ssme. Of course the variable x,
the mass fraction of free oxygen,
is always greater in the fro~& “
case (~) than in the equilibrium
case (~).

P, and X are taken to be the ssme
for the zero rate smd equilibri~ c&e~ From figures 3 snd 4 it is seen
that for both limiting cases the density falls below the free-stream
value long before the ~ressure does. Although the cties for equilibrium
and frozen flow appear to be very close to each other for both pressure
md density, it must be remembered that their absolute values are small
when A/~n is large and, consequently, the percent difference between
the two cases may be considerable. In figures 2 through 6 all the curves
have sn infinite sloye at the throat. This does not mean that the gra-
dients are especially large in that neighborhood ~ause dA/dy = O when
A y ~n, and for sny realistic stresmtube d.&\dy is very small in the
neighborhood of kin. To compute x(A) (fig. 6) a particular shape had
to be considered (see sketch):

A/~n = 1.00+ 19.00 tsmh 0.0586 (y/z)2 , 2 = 75 cm (3U

Initi?l point equilibriutn flow

Initial point frozen flow

I
Throat

1
~ ‘F

1 I
I
I i ~’—. \ {

I –~–

I
I

! I
I I

-

Cross section of channel ,equation (31)

.

.
,.

—
—

.—
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This shape has the property that for distances far from the throat
(I~ 1: >2A the cross-sectional area approaches the constant value
A . . The value of B(y) turns out to be yracticalJy zero for
small y and increases with increasing y. Its value for y = 230 cm
is only o.20. Thus in this example x(y) stays relatively close to

%(Y)} aS iS ~SO seen ~ fiwe 6= The first-order correction to T
is shown in figure 2. The enthalpy corrections (for T, p, p) discussed
in the preceding section were found to be small, leading to practically
no change from the infinite rate case.

The conment made earlier about the lag of the reactton being cumula-
tive can be examined from this exsmple and, for this purpose, figure 7
has been prepared. Even though the concentration of atomic o~gen lies
relatively close to the infinite rate case, this figure shows that the
percent deviation becomes progressively larger as the flow proceeds.

Having considered a specific exsmple, it is uf imterest to consider
the effect of varying the parameters of the problem. One would intuitively
expect that sm increase of initial density would cause the reaction to
stay still closer to chemical equilibrium (decrease the value of B),
because a higher density meam mare collisions and therefore faster reac-
tions. Also one would expect that decreasing the length scale of the
channel would cause the reaction to stay closer to the frozen limit
(increasing the value B). ~th these expectations are borne out by the
equations. (Qualitativelythis csn be seen from equations (8) and (12)
alone; qumtitatively density and distance must also be traced through
the whole set of equations (23) to (27).) These facts show that one can
simulate the chemical aspects of the flow at high altitude flight by
using a small model at higher densities.

WHEN CANVIERATIONAL REKAXATIONBE IGNOFU!ZI

In the foregoing analysis the contribution of molecular vibrations
to the internal energy of the gas has been included. However, it has
been implicitly assumed that the equilibrium distribution of ener~
between vibrations and other degrees of freedom exists at all times.
This assumption is investigated in the present section. Mst of the
results obtained apply to chsmnel flow generally; but some are applicable
only to a channel flow where initially thermodynamic equilibrium exists;
still others apply to the situation immediately behind a shock wave,
before the gas has come to thermodynamic eqpilibrfum. Whenever a result
does not apply generally, the particular situation to which it does apply
will be stated.
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Two Alternative Condition6
Vibrational
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Permitting the Neglect of
Relaxation

a

.

In order to find the circumstances under which vibrational eq..lib-
rium cen be assumed without introducing sny significant errors, it is
useful to define (see Bethe and Teller, ref. 21) a relaxation len@h for
vibration, ~, which is the distance over which en initial deviation of
the vibrational energy of the system from its equilibrium value will be
reduced to one eth if the tanperature of the gas does not change. This
qyantity is the exact snalog to the chemical relaxation length X defined
in equations (7) and (8); X gives the distance over which sn initial
deviation in x from its equilibrium value will be reduced to one eth,
if the density and temperature of the gas remain constant.

With this definition one csn state in a quantitative way that vibra-
tional equilibrium csm always be assumed, if the vibrational relaxation
happens sufficiently fast. Roughly, “sufficiently fastt~mems:

-rV Av
<<1, h—=— —<<l everywhere

1- A Lv
(32)

Here ~ is the distance over which the equilibrium vibrational energy
chemges to one eth of its original value. If--in(32), much less than is
replaced by much greater than, one has a sufficient condition permitting
one to regard the vibrations as frozen. The more precise conditions,
including cumulative effect, will not be discussed because for the pres-
ent purpose only simple estimates based on (32) are required. These
cumulative effects are analogous to those discussed in connection with
chemical relaxation. The first of the conditions (32), -rv/T <<1, states

that the time scale of vibrational relaxation is so short compared to the
chemical relaxation that, when initially both are out of equilibrium, the
vibrations will already be adjusted before the chemical concentrations
chemge si~ificsntly. The second statement says that vibrations will
stay near equilibrium if the equilibrium position does not move away
faster than the system!s rate of approach to ~qtilibrim.

Short relaxation times for vibrations yrqvide a sufficient condition
permitting the neglect of the effects of relaxation; but.it is not a
necessary condition. This becomes clear if me considers low temperatures
where vibrational relaxation times become very long; yet one can usually
regard the flow as being in vibrational equilibrium simply because the
fraction of the molecular energy tied up in vibrations is so minute,
that whether vibrations relax rapidly or slowly will have no significant
effect on the flow. Thus there exists a different, also sufficient but
not necessary, condition allowing the neglect of vibrational relaxation
which expresses the requirement that the amount of energy tied up in
vibrations is sufficiently small:

...

.

.
.

.
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.

.
&—<<1
AH

29

(33)

Here ~ is the change of vibrational emergy for the case of vanishing
vibrational relaxation time. The qumtities & and AE are the changes
of ~ and H along a stresmtube. When the condition (33) is satisfied,
it is quite inconsequential whether the vibrations =e treated as frozen
or as being in equilibrium. (The basis for the condition (33) is given
in Appendix C.)

b the remainder of this section these two conditions, (32) ~d (33),
are discussed in further detail; numerical estimates are made of the
required quantities and applied to practical situations.

“ will be employed.The useful concept of l!vibrationaltemperature

It is defined in the following way:

When there exists thermodynamic equilibrium, the vibrational energy
per diatomic molecule is related to the temperature by

where h is Planck~s constant and v is the vibrational frequency of
the molecule. In a nonequilibriw situation this relation between vibra-
tional ener&y and temperature will not hold, but one csn always find a
number Tv such that

t+ = hv

hv&Tv-l
e

It has been shown by Rubti, Shuler, and MontroIl (refs. 25 md 26) that
for all the cases of interest here,4 the vibrational energy will.be
divided smong the molecules according to a Ihltzmann distribution, where
Tv plays the role of the temperature. Thus during the time when vibra-
tional relaxation is occurring, the gas is correctly regarded as two
systems (vibrations and the other degrees of freedom) in contact, each
having a different tqerature (Tv and T, respectively); Tv is called
the vibrational texmerature.

%ore exactly, the situation consideredby these authors is that of
a system of hazmonic oscillators which initially have a Boltzmamn dis-
tribution corres~nding to a temperature To, and which are contained in

. an excess of inert gas acting as a heat reservoir of temperature T. It
is then proved that as time proceeds the system of oscillators continues
to have a Boltzmann distribution, the temperature of which is the Tv
defined almve. The coupling betweem the chemical reaction and vibrations
may cause deviations from the Boltzmann distribution.
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Numerical Values of Relaxation Times

In the considerations concerning chemical relaxation behind shock
waves, it was assumed by earlier authors (refs. 12 and 21) that the vibra-
tional relaxation times are short compared to chanical relaxation times.
Recent experimental evidence (rel%. 10, 27, smd 28), however, seems to
indicate that at hi@ Mach numbers chemical equilibrium of oxygen is
achieved before the vibrations have become ac”tive,so that condition (32)
is not satisfied.

Perhaps an intuitive reason for the earlier assumption is that an
energy exchsnge between molecules sufficient to cause dissociation is
much less likely than the small energy exchange required to produce vibra-
tional excitation, end thus the time of relaxation must be longer. Here
it must be remembered that the transition probability from 02 molecule
plus M to two O atoms plus M is proportional to the density of final
states, end this density is large for three fkee atoms, whose energies .

snd momenta are not qusntized. Furthermore, to achieve a vibrational
state with energy nhv from the ground state; it requires n collisions,
each of which must trensfer a qusutum hv of energy to the molecule in
question; it requires more such collisions if-the molectie loses some of
its vibrational energy in between. However, “dissociationmay occur in
one step, although its _probabilityis expected to be higher if the .k<
molecule is in a high vibrational state slre~y (see refs. 27 end 29).

—

Numerical values for vibrational relaxation tties were calculated
by using the harmonic oscillator model (followingBethe and Teller) for

-—

vibrations, snd the transition probabilities based on the rather satis-
factory theory of Schwartz and Herzfeld (refs. 30 end 31). Bhclmmnts
experimental data were used to estimate collision diameters (see ref.
32).

To make some numerical estimates of chemical relaxation times in
air, equation (8) is used together with the recombination rate constant
given by equation (21). Above 60000 K it is found thatthe chemical
relaxation times are the same immediately behind the shock wa~e (x = 0,

——

dissociation) and during the subsequent expsnsion process (x> %, recom-
bination). At the lower temperatures there is some dependence on x.
Thus for mOOO K and lower temperatures two values are given, the value
for x = O end the one for x = ~, the latter being put in parentheses.
The chemical relaxation times are also expected to be differat if the
vibrations are frozen in instead of being in equilibrium. Both cases
are tabulated in adjacent columns below and ~hown in figure 8.

.

.
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A

3,000
3,0(X)
4,000
4,0Q0
~,ooo
5,000

P

10
,01
10
,01
10
,01

‘TP)02 chemic

Vibrations
frozen at

Tv<< 2300° K

7*7 (3.7)
~;: [w;]

w. (io)
.27 (.M)
.43

L reaction

Vibrations
active

8.1 (4.1)
330 (125)

1.: y:)

.45 (.30)
1.25

I II
7;000 10 .ol~ .ox
7,000 .01 .019 .071.

12,000 10 .0012 .Oop
.0012 I .Oql

:TP)02 vibrations

1.2
1.2
.29
.29
.17
.17
,15
● 15
.11
.ll

‘a)N= vibrations

40
40
16.5
16.5
5.6
5.6
2.2
2.2

● 57
● 57

/Note: The units for I-P are microsecond atmospheres. The unit of p
is normal atmospheric density. The quslltity(Tp)vibrati~n~ iS inde-
pendent of demsity or pressure, ~d (Tp)chemic~ reaction also becomes
insensitive to changes in density ~d pressure at the higher tempera-
tures.

The chemical relaxation time depends on the equilibrium constsmt
through ~ and equation (27). The frozen relaxation times were calcu-
lated with the help of a generalization for vibrational nonequilibrium
of the usual concept of sn equilibria constant of the 02 + 2 0 reac-
tion. By definition the equilibrium constant is a ratio of concentrations ●

or the corresponding partition functions. When the distribution over
vibrations_ states is that corresponding to a temperature Tv rather
than T, but that over other states is that corresponding to a tempera-
ture T; the natural generalization fcr &(T) is:

where fv(T) iS
temperature T:

For vibrational.
hv/kTv>>l and

. temperature, so
ature leads to
vibrations case

the vibrational partition fumction

fv(T) ‘@-hv’71

corresponding

(34)

to the

equilibrium Tv = T, while for frozen vibrations
fv(Tv) = 1. For oxygen hv@ = 2300° K is the critical
that a vibrational temperature near ordinary room temper-
fv(Tv) = 1. The evaluatim of T for the frozem-
also reqyires that some assumption be made regarding the
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dependence of the recombination rate constant on Tv.
5 i~ made that ~ isnot too unreasonable, assumption

Wignerts formula (21) is used throughout.

In figure 8 the relaxation times are plotted as a

NACATN 4144

The simplest, and
independent of Tv.

fumction of tem-
perature. The nearly horizontal regions into which vibrational relaxa-
tion times fall are shaded in to point up how ,chemicalrelaxation times
(based on Wigner’s theory) va~ in relation to the vibrations. It is
seen from this figure or the table that at temperatures in the neighlmr-
hood of ~00° K, the vibrational.and chemical relaxation times are of
the same order of magnitude, but that at higher temperatures the chemical
relaxation times are relatively much shorter, and at lower temperatures
they become longer than the vibrational relaxation times. In synibols:

T/TV + 1 , when T % FOOO

T/TV<<l , when T ~ 7000°

If the coil.isim theory recombination rate
is employed, one obtains still shorter chemical.
region in which the two relaxation times are of

.

.—

—

K

K —

used by Wood (ref. 12)
relaxation times. The
the same order of magni-

tude is of special interest: It suggests the possibility of studying
the coupling of the two processes. This coupling between the two stiul-
taneous processes is sensitive to some details of the reaction mechanism,
which otherwise would elude obsenation. For this reason further study
of this coupling is considered to be of interest.

.
The relative numerical values of T md TV have some implications

for the flow hmnediatel.ybehind a strong shock, as well as for the flow
of air around the corner of a rapidly moving blunt body. We consider
the former case first.

Behind shock waves the abcve result, that at higher temperatures
chemical relaxation times are shorter them vibrational relaxation times,
appears to be borne out by the unpublished req~ts of Resler’s experi-
ments with shock tubes (ref. 28) and also in line with corresponding
experimental results for the dissociation of nitrogen obtained by the
use of strong shock waves (refs. 27 and 29). “Boththe vibrational and
chemical relaxation produce rapid cooling of the (translationaltemper- .
ature of the)’gas and consequently a rapidly sinking equilibrium value
for the degree of dissociation w snd sm increasing chemical relaxation
time. As is suggested in the sketch, it is po6sible that x does not
increase monotonically behind the 8hock wave but reaches a maximum smd
then decreases. This occurs as follows: At first the rate of approach
to chemical equilibrium (eq. (7)) is rapid because it is proportional to
(x-~) and because the temperature is high. As the reaction absorbs some
of the themnal energy, the quantities x and & approach each other.,

5The only such dependence on TV would arise if the third body in
a triple collision were a molecule and its internal motion made it a
better or worse ener~ absorber.

.—

—

*

.
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If the vibrational relaxation time
is relatively long, the vibrations. \
will absorb thermal (i.e., random \
translational and rotational) \ Xe

\energy, even after Xti Xeare \
very close to each other, sad cause
a continuing temperature decrease

t A

\
@ decrease of ~. This permits X \

the two curves x(y) and ~(y) to x --

intersect with a resulting maximum
in x(y). The experiments of
Resler indicate such a maximum.

Now in the expansion process,
y~

such as the chsnnel flow considered here (see also ref. 8),the situation
differs from the flow behind the shock in that vibrations are initially
overexcited and the gas overdissociated, while the other extreme occurs
immediately behind the shock. In the analysis of this expsnsion in the
earlier part of this paper it was asswned that the vibrations are in
equilibrium throughout the flow. Yet, sipce Tv is not small compared
to T, clearly the condition (32) is not satisfied. The justification
for neglecting vibrational relaxation~st then be based on the condi-
tion (33) that the vibrational energy is sufficiently small.

Application of the

In Appendix C it
stating the condition
small compared to the

This condition states

Sufficiently Small Vibrational Energy Condition

is shown that a practically equivalent way of
(33), that the chaage of vibrational energy be
change in enthal.py,is:

that the change of vibrational.energy is smsLl

(35)

compared to other chsnges in the enthalpy.

For the special case of flow immediately behind a shock wave, the
vibrational energy is initially ze~, so that &v = ~ is the total
energy per molecule received by the vibrational mode. From the analysis
of Bethe smd Teller it is known that the temperature behind a shock
decreases, giving energy to the vibrations and the reaction, This
exch~ge of energy would make q = 1, so that condition (35) is certainly
not fulfilled. Act@lly q is usuaUy even larger thsn unity because
the slowing down of the flow behind the shock front reduces the decrease
in thermal energy (~) which would otherwise occur,
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It
one has

is quite different in the one-dimensional channel flow in which
vibrational equilibrium initially. In this case

Aev XkATv ~ W. The equality pertains when there is no vibrational
lag, so that & = ~. For o~gen D/5k% 12,000° K; the condition (35)
becomes

1 ~+ 12,000 ~>>l-=
np

In the par$icul-arexsmple shown in figures 2 through 7, one sees from
the graphs that AX/L3Q 1/5000° K; hence l/q~5 ~d the condition (35)
is fairly well satisfied.

A simple estimate of the enthalpy in this exsmple indicates that
the failure to consider finite vibrational relaxation times causes one
to overestimate the chsnges in ~thalpy by about 1 or 2 percent. From
equation .(25)it then follows that the flow v“elocitychanges a little
more slowly than in the equilibrium case; the corresponding chsnges in
the other flow variables can be easily obtained from equations (23) to
(27). The changes are so small that they could hardly show up on figures
2 throu@ 7.

CONCLUDING REMARKS

In conclusion we summarize the status of_the problem of one-
dimensional.channel flow in the presence of recombination and dissociation,

In principle, one only has to know the rate constant kR(T), and
one can, by rmnerical mems~ inte~ate forward the exact rate equation
together with the flow eqyationj w au v’uiahles of interest will be ‘~
given by the solution (see eqs. (22) to (27)). If mother reaction iS
occurring s~taneously, mother variable will be ~troduced~ ~alogous
to the mass fraction of oxygen in atomic form used for the dissociation-
recombination reaction, and an additional equation must be considered.

The simultaneous numerical evaluation of the flow smd the rate of
reaction is not necessary if the deviation from local chemical equilib-
rium is not large. In this case one can comp-utethe relaxation length
(see eq. (8)) from the infinite rate approxtition for the flow; then
the solution for the mass fraction of oxygen-dissociatedtakes on a
relatively simple’form,permitting numerical evaluation of the lag of
atomic oxygen concentration behind equilibria. This lag leads to
readily computed modifications of the flow variables. One can express
the amount of lag in terms of a parmeter, whose nweric~ v~ue identi-
fies a flow which is essentially frozen or essentially in equilibrium.
The chemical aspect of flow around a large body at low densities may be
simulated by increasing density and decreasing size.

.-—.-

*

-

—-

—

—

—
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In particular it is noted that the shape of streamtubes, for given
initial conditions, will be a function of the smount of lag behind chem-
icsl equil.ibrim. When the equations are ap@led to flow similar to that
in a streemtube beginning near the sta@ation region of a bluff body and
leading around the body, it becomes a~parent that the contraction of the
stresmtube in the sonic region is considerably greater when the reaction
rate is very fast thm when it is very slow.

h experiments involving flow, the rate constant %(T) is not
observed directly, but rather the relaxation length. This length depends
not only on the temperature but also on local density, flow velocity,
and extent of dissociation. Thus it reqtires a measurement of several
quantities to determine the function ~(T) at one temperature. Until
further experimental data become available, however, Wiguer~s theory of
the recombination process is regarded as the best basis for estimating
a rate constant. Collision theory fails to consider some importsat phys-
ical features of the recombination process. The E@.ng theory contributes
information abut the relative reaction rates for oxygen in an inert gas
atmosphere compared to oxygen in m atmosphere of nitrogen molecules.

It is not generally permissible to regard the vibrational relaxation
as fast compared to chemical relaxation. In fact the present calcula-
tions indicate that at high t~peratures the rate of dissociation adjust-
ment of oxygen is greater than the rate of vibrational adjustment.
However, even when vibrational relaxation is relatively slow, it may turn
out to be entirely negligible because the ener~ involved in vibrations
is -. The study of the coupling of the two relaxation times, when
they are of the ssme order of magnitude, holds promise in yielding
information about the reaction mechanism.

Ames Aeronautical Laboratory
National Advisory Comittee

Mffett Field, Calif.,
for Aeronautics
Sept. 10, 1957
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APPENDIX A

SOLUTION OF EQUATION

To prove that equation (10) in the text,

x(y) = ~(y) + #Y) [x(o)-XJy) ]“ +

is the solution of the linearized fdrm of

The standard form of the solution of
tion (7) is

(7)

~-s(y) J
~(o)

&*&&

XCO(Y)

equation (7):

the linear first-order equa-

V y&es(Y’)~f +x(o)x(y) -e-s(y)
0% 1

(Al)

.

From the definition of S, one has

‘J;:)[& (~es*)-es*
1

%(0) *& . es~-xJO)+ f
& &

%(Y)

Putting this result into equation (Al) giveseqwtion (10).
—
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APPENDIX B

CORKEK!TIONSTO COLLISION TEEORY

The efficiency of a triple collision, r, is not, in general, a
constmt. A crude estimate of this quantity (ignoring the steric factor)
might be made as follows: A triple collision is successful if the ini-
tial velocities of the three particles are such as to lead to s,final

..

state in which the two o~gen atoms are bound:

()1 % ~,2

5E- relative < ‘(r)
(Bl)

The prime indicates final velocities. This condition on the velocities
depends on r, the distance
collision is occurring. To
and replace (Ill)by:

The propsed model for
Oxygen atoms 1 and 3 are in

of the two o~gen atoms when the triple
simplify things we note ~elative .277

(B2)

the recmnbination process is then as follows:
collision (i.e., they are within a diameter

of each other). A foreign atom, 2, colLides with 1 and reduces its
velocity so as to satisfy (B2). We ask what fraction of triple collisions
satisfy (B2).

When it enters the potential field, particle 1 will increase its
kinetic energy by the em&nt V
have a velocity squared between

(mJ-f ~ VL2 )+V dv12 =

so the-n&ber which ~twhilein collision!!
vx2 + 2V/ml and v12 + 2V/ml + dvx2 is:

At say one time the
proportional to the

number in collision in a given velocity range is
duration of collision which varies as

l/JvL2+ 2v~ ~ l/vl. This approximation is evidently best when
T.T/kT<<1. If the center of mass of 1 and 2 is assumed at rest then the
relative frequency of triple collision of different velocities g is—

(%/2Jf@ ]% Je-%vs2/H d~a So finally we have for the average
effectivties8 of a triple collision:
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—.,

J vse
all velocities

For simplicity we take ml = ~ = m,

To avoid

~2 - 1
VI =-

2

the integration over

[(v12+a+‘“21.

I’(r)= 1 - e-

angles

and then v1~2+v_~2=
(v’2+$+v”20

we shnply take

Then the integrations are elementary giving:
.

[

2

L) 1& l+L+&L
kT 2

(B3)

When,even in the tail of the potential V~ is greater than or of the
order of unity, the effective size of the”molecule decreases with rising
temperature, because collisions tsking place @ the long Vsm der Waal
tail of the potential curve will make sn importsmt contribution to the
total nuniberof successful reactions. To make some estimate of this
effect, we note from equation (B3) that I’ is a decreasing function
as IV(r)I decreases. Now let us count only those tri@e collisions
occurring within a radius such that on the average (over velocity) they
have at least a probability I’[V(r)@T] = l/n of succeeding. For exsm-
ple, let us choose n such that h the region or interest, r can be
approximated by some power law with an exponent s. Noting that the form
of the potential for large r is V(r) =- c/@J giving a msxiaum

/f7\l/s/.\x/6

r “ ‘=”(7 G)
then the diameter -r’(c/kT)l’e. As the
expression for ~ cubed, the effect of an
introduce a factor ~’.

dismeter enters into the
increasing diameter is to

.

—.

.

—

—

.

.
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ANALYSIS OF CONDITION (33) FORNEGLIK!TINGVIBRATIONAL R%GAXATION

APPENDIX c

GenersJly one must look at W the flow eq..tions, (22) to (27),
to see the effect of vibrational disequilibrium. In a formal way these
equations are unchanged, although an eqyation for the rate of change of
vibraticnxalenergy (~) would have to be added. However the internal
energy and thus the enthalpy E (eq. (25)) become a function of the
amount of vibrational energy ~ and similsrly the eqtilibriw.ucon-
stsmt & (eq. (27)) will now depend both on T and ~, and finally the
chanical relaxation length A (eq. (22)) will depemd on ~.

It is stated in the text that if the condition &/AH<<l
(eq. (33)) is satisfied, the effects of vibrational disequilibrimn are
unimportant. The quantity & is the change of vibrational energy
assuming no vibrational lag, thus giving an upper limit to the change
in ~. We wish to show how this condition assures that neither H nor
Q nor A is iqcmtantl ymcdified:

That the modification of H is negligible is explicit in the con-
dition (33) and needs no further discussion. The necessary modification
of Ke is expressedby equation (34) (i.e., %(T) is replaced~

G(T, Tv))●
These two nwibers are si@ficantly different only when

fv(Tv) ad fv(T) are very different and, consequently, ~ is large
and the inequality (33) cannot be fulfilled. (When one has a large
temperature gradient, AH can become quite large, but & will increase
propotiionally.)

From equations (27) and (8) it is seen that the inverse chemical.
relaxation length is approximately linear h ~ snd also depends on

P: T> ad U= The modifications required of p, T, and u to account
for vibrational lag csn be shown to be propm%ional to the modification
b E. Thus if condition (33) is satisfied, neither Ke nor p, T, or u
are much changed due to the finite vibrational relaxation time, and
therefore 1/% is not much changed either.

Having pointed out that (33) is indeed a sufficient condition, we
now show that condition (35) is practically equivalent to (33): For a
dissociating diatomic gas & of nmlecular weight M~ of which a
fraction X - nA/nA+~& is in atomic form, the internal energy consists

of random translational motion [~ = 3/2RT@~(l+x)l, rotational energy
[ER = RTfl&(l- X)1, vibratio~ enerw [% = N@&(l- X)El, energ due
to dissociation [~ = (~fi~)x 1, =d electronic energy Eel. One then
obtains the following expression for the enthslpy per unit mass H by
msking use of the equation of state of the gas:
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1(cl)

The expression (Cl) does not assume either chemical or vibrational
equilibrium. We @e one~ti.lifying assumption, namely, that changes
in electronic excitation do not occur. This is certainly a good approx-
imation at-low temperatures, but the assumption must be dropped at very
high temperatures. The characteristictaqgeratures (which appear in the
Boltzmsmn factor) are 22,710° K and 27,610 K for atomic oxygen snd
nitrogen, respectively, while for molecular oxygen snd nitrogen they are
11,340° K smd 7’1,~0° K. For air, if the nitrogen is undissociated but
a fraction x of the oxygen is dissociated, then

Nowwe have from eqpation (Cl)

@r= 1
z &cAr+&x

1+
A=v

(C2)

.

—

It is evident from equation, that the condition &/~<<1 is
k

equivalent to
A%

<<1, This is the condition (35) that was
IkAT+;&
2

to be derived.
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